COURSE HANDOUT

Course Code	ACSC13
Course Name	Design and Analysis of Algorithms
Class / Semester	IV SEM
Section	A-SECTION
Name of the Department	CSE-CYBER SECURITY
Employee ID	IARE11023
Employee Name	Dr K RAJENDRA PRASAD
Topic Covered	Job sequencing with deadlines
Course Outcome/s	Compare Identify suitable problem solving techniques for a given problem and finding optimized solutions using Greedy Method
Handout Number	27
Date	

Content about topic covered: Job Sequencing with Deadlines

Job Sequencing with Deadlines

We are given a set of n jobs. Associated with job i is an integer deadline $d_i \ge 0$ and a profit $P_i > 0$. For any job i the profit P_i is earned if and only if the job is completed by its deadline. To complete the job, one has to process the job on a machine for one unit of time. Only one machine is available for processing jobs.

A feasible solution for this problem is a subset J of jobs such that each job in this subset can be completed by its deadline. The value of a feasible solution J is the sum of the profits of the jobs in J, or

 $\sum_{i \in J} P_i$

An optimal solution is feasible solution with maximum value.

E.g.: Let $n = 4$, $(P_1, P_2, P_3, P_4) = (100, 10, 15, 27)$ and $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1$	1)
The feasible solutions and their values are:	

<u>S.No</u> .	Feasible solution	Processing sequence	value
1	(1,2)	2,1	110
2	(1,3)	1,3 or 3,1	115
3	(1,4)	4,1	127
4	(2,3)	2,3	25
5	(3,4)	4,3	42
6	(1)	1	100
7	(2)	2	10
8	(3)	3	15
9	(4)	4	27

Solution 3 is optimal. In this solution, only Jobs 1 and 4 are processed and the value is 127. These jobs must be processed the order job 4 followed by job 1.

Here the objective function is $\sum_{i \in J} P_i$

To include the next job that increases $\sum_{i \in J}^{\square}(P_i)$ subject to the constraint that J is a feasible solution.

Consider the jobs in descending order of P_i.

$J = \emptyset$	$\sum_{i \in J} P_i$
J= {1}	feasible
J= {1,4}	feasible
J= {1,3,4}	not feasible
J= {1,2,4}	not feasible

<u>So</u> J= {1,4}

Value = 127.

Eg: Let n = 5, $(P_1, P_2, P_3, P_4, P_5) = (20, 15, 10, 5, 1)$ and $(d_1, d_2, d_3, d_4, d_5) = (2, 2, 1, 3, 3)$

J Ø	Assigned slots	Job considered	Action	Profit
۶ {1}	[1,2]	2	Assign to [0,1]	20
{1,2}	[0,1],[1,2]	3	Cannot fit. Reject	35
{1,2}	[0,1],[1,2]	4	Assign to [2,3]	35
{1,2,4}	[0,1],[1,2],[2,3]	5	reject	40

Optimal solution is $J=\{1,2,4\}$ with a profit of 40.

Greedy algorithm for sequencing unit time jobs with deadlines and profits:

Algorithm JS(d, j, n) $//d[i] \ge 1, 1 \le i \le n$ are the deadlines, $n \ge 1$. The jobs // are ordered such that $p[1] \ge p[2] \ge \cdots \ge p[n]$. J[i]// is the *i*th job in the optimal solution, $1 \le i \le k$. // Also, at termination $\hat{d}[J[i]] \leq d[J[i+1]], 1 \leq i < k$. d[0] := J[0] := 0; // Initialize. J[1] := 1; // Include job 1. k := 1;for i := 2 to n do ł // Consider jobs in nonincreasing order of p[i]. Find // position for *i* and check feasibility of insertion. r := k;while ((d[J[r]] > d[i]) and $(d[J[r]] \neq r))$ do r := r - 1; if $((d[J[r]] \leq d[i])$ and (d[i] > r)) then ł // Insert i into J[]. for q := k to (r+1) step -1 do J[q+1] := J[q];J[r+1] := i; k := k+1;} } return k; }

Example:

job	d	Р
T1	7	15
T2	2	20
T3	5	30
T4	3	18
T5	4	18
T6	5	10
T7	2	23
T8	7	16
T9	3	25

After arranging them in decreasing order of the profit

Job	d	Р
Т3	5	30
T9	3	25
T7	2	23
T2	2	20
T4, T5	3, 4	18,18
T8	7	16
T1	7	15
T6	5	10

Total Profit = 20+23+25+18+30+15+16 = 147.